In commercial buildings, HVAC loads normally represent the highest energy expense. Geographic location plays a significant role: buildings far to the north or south of the world typically have high heating expenses, while those located in the tropics may require air conditioning all year long.
Just like in residential settings, there is a broad range of heating and cooling options for commercial buildings, each with advantages and limitations. Three of the most commonly used systems for commercial buildings are:
Traditional VAV systems suffer a drastic reduction in energy efficiency when subject to part load conditions: if all building zones are at partial load with their dampers half-closed, duct pressure increases and the system may become noisy. In addition, the extra pressure represents wasted fan power. However, it is possible to achieve excellent results through the use of automation and variable frequency drives:
There can be considerable savings on fan power when speed is controlled through a variable frequency drive. In general, fan power is proportional to speed cubed – a fan running at 90% speed only consumes around 73% of the energy it would consume at full speed. An added benefit of speed control is that noise is drastically reduced.
VAV systems with packaged rooftop units are practical in facilities that have a large rooftop area in proportion to their indoor floor space, given that air is the main medium used to transport heat. These systems are not practical in multi-story buildings due to the limited rooftop area and the long vertical distances involved; systems based on water-cooled chillers or water-source heat pumps are preferred in these applications.
In both cases, heat is exchanged between the circulating water and the indoor air at the AHUs. If the chiller and boiler share a water circuit (two-pipe system), the entire building must operate in either heating or cooling mode; however, when there is a separate water circuit for each mode of operation (four-pipe system), simultaneous heating and cooling can be provided to different zones. Of course, a four-pipe system is more expensive because piping and accessories are essentially doubled.
Just like in the case of VAV systems, it is possible to achieve considerable savings with control and automation:
Chiller-based systems typically offer a higher efficiency than VAV systems, and are also more practical for multi-story buildings: rather than having several packaged rooftop units, it is possible to consolidate the system into a single chiller and cooling tower, and only the cooling tower has to be located outdoors or on the rooftop.
Just like in the two previous scenarios, it is possible to make the system even more efficient by adding speed control to all pumps and fans used. Heat pumps are among the most efficient heating and cooling systems in the market: they can match or surpass the efficiency of a chiller in cooling mode, and in most cases they can provide space heating with less than 40% of the energy consumption of a resistance heater.
The need to install a dedicated heat pump for each building zone drives up the cost of these systems, but this is compensated in the long term thanks to the superior energy efficiency achieved. For example, if there is a moment when cooling and heating loads are equal, this system can operate with both the boiler and cooling tower deactivated.
One of the most important design choices in a commercial building is HVAC configuration, since this system represents a significant portion of ownership costs in the long term. Building layout is an important consideration: low-height facilities with ample rooftop areas tend to favor packaged rooftop units with VAV systems, while multi-story buildings tend to favor the use of chillers or water-source heat pumps.
Of course, there are viable energy efficiency enhancements that can be deployed in all cases. Modulating the speed of compressors, pumps and fans is more energy-efficient than cycling these pieces of equipment on and off, and it also contributes towards a longer service life and reduced maintenance expenses.